Staircase Tilings and Lattice Paths
نویسندگان
چکیده
We define a combinatorial structure, a tiling of the staircase in the R plane, that will allow us, when restricted in different ways, to create direct bijections to Dyck paths of length 2n, Motzkin paths of lengths n and n−1, as well as Schröder paths and little Schröder paths of length n.
منابع مشابه
Staircase tilings and k-Catalan structures
Many interesting combinatorial objects are enumerated by the k-Catalan numbers, one possible generalization of the Catalan numbers. We will present a new combinatorial object that is enumerated by the k-Catalan numbers, staircase tilings. We give a bijection between staircase tilings and k-good paths, and between k-good paths and k-ary trees. In addition, we enumerate k-ary paths according to D...
متن کاملNew Aspects of Regions whose Tilings are Enumerated by Perfect Powers
In 2003, Ciucu presented a unified way to enumerate tilings of lattice regions by using a certain Reduction Theorem (J. Algebraic Combin., 2003). In this paper we continue this line of work by investigating new families of lattice regions whose tilings are enumerated by perfect powers or products of several perfect powers. We prove a multi-parameter generalization of Bo-Yin Yang’s theorem on fo...
متن کاملAlternating sign matrices and tilings of Aztec rectangles
The problem of counting numbers of tilings of certain regions has long interested researchers in a variety of disciplines. In recent years, many beautiful results have been obtained related to the enumeration of tilings of particular regions called Aztec diamonds. Problems currently under investigation include counting the tilings of related regions with holes and describing the behavior of ran...
متن کامل0 Non - Intersecting Paths , Random Tilings and Random Matrices
We investigate certain measures induced by families of non-intersecting paths in domino tilings of the Aztec diamond, rhombus tilings of an abc-hexagon, a dimer model on a cylindrical brick lattice and a growth model. The measures obtained, e.g. the Krawtchouk and Hahn ensembles, have the same structure as the eigenvalue measures in random matrix theory like GUE, which can in fact can be obtain...
متن کاملSigned Lozenge Tilings
It is well-known that plane partitions, lozenge tilings of a hexagon, perfect matchings on a honeycomb graph, and families of non-intersecting lattice paths in a hexagon are all in bijection. In this work we consider regions that are more general than hexagons. They are obtained by further removing upward-pointing triangles. We call the resulting shapes triangular regions. We establish signed v...
متن کامل